首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First-principles study of lattice dynamics and thermodynamics of TiO2 polymorphs
Authors:Mei Zhi-Gang  Wang Yi  Shang Shun-Li  Liu Zi-Kui
Institution:Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. zzm108@psu.edu
Abstract:The structural, phonon, and thermodynamic properties of six TiO(2) polymorphs, i.e., rutile, anatase, columbite, baddeleyite, orthorhombic I, and cotunnite, have been systematically investigated by density functional theory. The predicted volumes, bulk modulus, and Debye temperature are in good agreement with experiments. The phonon dispersions of the TiO(2) polymorphs were studied by the supercell approach, whereas the long-range dipole-dipole interactions were calculated by linear response theory to reproduce the LO-TO splitting, making accurate prediction of phonon frequencies for the polar material TiO(2). The calculated phonon dispersions show that all TiO(2) polymorphs are dynamically stable at ambient pressure, indicating the high-pressure phases might be quenched to ambient conditions as ultrahard materials. Furthermore, the finite temperature thermodynamic properties of TiO(2) polymorphs were predicted accurately from the obtained phonon density of states, which is critical in the future study of the pressure-temperature phase diagram of TiO(2). The calculated Gibbs energies reveal that rutile is more stable than anatase at ambient pressure. We derived the Gibbs energy and heat capacity functions for all TiO(2) polymorphs for use in thermodynamic modeling of phase equilibria.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号