首页 | 本学科首页   官方微博 | 高级检索  
     


Angular and frequency dependent spin relaxation study of liquid crystalline cyanobiphenyls
Authors:J. Struppe   F. Noack
Abstract:NMR field-cycling measurements of the Larmor frequency (v) and angular (Δ) dependences of the longitudinal proton spin relaxation time T1 for the nematic liquid crystals 5CB and 8CB allow a more detailed analysis of the underlying molecular motions than data available previously. All T1 (v, Δ) dispersion profiles essentially distinguish three frequency ranges where T1 is governed by either local field effects, collective motions (director order fluctuations), or rotational and translational diffusion of individual molecules or molecular groups, respectively. The angular dependence supports and extends previous conclusions about the significance of the order fluctuation term at low (kHz) and high (MHz) Larmor frequencies; in addition it is the basis for the disentanglement of local field effects, which involve Jeener's dipolar relaxation, and of the sophisticated rotational relaxation models suggested in the literature by Dong, Nordio and Vold. It is found that Vold's third rate concept gives the best explanation of the measurements. The results on the rotational diffusion processes essentially agree with deuteron studies from the literature, but also reveal clear distinctions with regard to the anisotropy parameter σ, essentially due to the improved separation from the order fluctuation contribution.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号