首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Single molecule observations of the adsorption sites of methyl isocyanide on Pt(111) by low-temperature scanning tunneling microscopy
Authors:Katano Satoshi  Herceg Eldad  Trenary Michael  Kim Yousoo  Kawai Maki
Institution:Surface Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.
Abstract:Scanning tunneling microscopy (STM) has been used to directly investigate the local structure of methyl isocyanide (CNCH3) adsorbed on Pt(111). At low coverages, CNCH3 is preferentially adsorbed at on-top sites, in agreement with earlier deductions based on vibrational spectroscopy. When dosed at low coverages at 50 K, the molecules tend to adsorb near other CNCH3 molecules with preferred distances of a and a, where a = 2.78 A is the lattice constant of Pt. Annealing the surface to 120 K, however, results in a more uniform separation of the molecules. At higher coverages, the CNCH3 molecules are observed to occupy both on-top and two-fold bridge sites. On the basis of STM image analysis, CNCH3 forms an ordered layer of (2 x 3) periodicity at 0.33 ML. Additional details on the structures of CNCH3 adsorbed at the on-top and two-fold bridge sites are provided by density functional theory (DFT) calculations. At a coverage that saturates the first layer (0.33 ML), the occupation ratio for the on-top and two-fold bridge bonded CNCH3 is 1:1, which is consistent with the results obtained from the combined use of experimental reflection absorption infrared spectroscopy (RAIRS) data and DFT calculations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号