首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption and desorption of copper and zinc in the surface layer of acid soils
Authors:Arias M  Pérez-Novo C  Osorio F  López E  Soto B
Institution:Area de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain. mastevez@uvigo.es
Abstract:The environmental and health effects of the contamination of soils by heavy metals depend on the ability of the soils to immobilize these contaminants. In this work, the adsorption and desorption of Cu and Zn in the surface layers of 27 acid soils were studied. Adsorption of Cu(II) from 157-3148 mumol L(-1) solutions was much greater than adsorption of Zn(II) from solutions at the same concentration. For both Cu and Zn, the adsorption data were fitted better by the Freundlich equation than by the Langmuir equation. Multiple regression analyses suggest that Cu and Zn adsorption depends to a significant extent on pH and CEC: for both metals these variables accounted for more than 80% of the variance in the Freundlich pre-exponential parameter K(F), and pH also accounted for 57% of the variance in 1/n for Zn and, together with carbon content, for 41% of the variance in 1/n for Cu. The percentage of adsorbed metal susceptible to desorption into 0.01 M NaNO3 was greater for Zn than for Cu, but in both cases depended significantly on pH, decreasing as pH increased. In turn, both pH(H2O) and pH(KCl) are significantly correlated with cation exchange capacity. Desorption of metal adsorbed from solutions at relatively low concentration (787 mumol L(-1)) exhibited power-law dependence on Kd, the quotient expressing distribution between soil and soil solution in the corresponding adsorption experiment, decreasing as increasing Kd reflected increasing affinity of the soil for the metal. The absence of a similarly clear relationship when metal had been adsorbed from solutions at relatively high concentration (2361 mumol L(-1)) is attributed to the scant between-soil variability of Kd at these higher concentrations. In general, adsorption was greater and subsequent desorption less in cultivated soils than in woodland soils.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号