首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of computational chemistry methods: crystallographic and cheminformatics analysis of aminothiazole methoximes
Authors:Ercanli Tulay  Boyd Donald B
Institution:Department of Chemistry, Indiana University-Purdue University at Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202-3274, USA.
Abstract:Cheminformatics is used to validate the capabilities of widely used quantum chemistry and molecular mechanics methods. Among the quantum methods examined are the semiempirical MNDO, AM1, and PM3 methods, Hartree-Fock (ab initio) at a range of basis set levels, density functional theory (DFT) at a range of basis sets, and a post-Hartree-Fock method, local Moller-Plesset second-order perturbation theory (LMP2). Among the force fields compared are AMBER, MMFF94, MMFF94s, OPLS/A, OPLS-AA, Sybyl, and Tripos. Programs used are Spartan, MacroModel, SYBYL, and Jaguar. The test molecule is (2-amino-5-thiazolyl)-alpha-(methoxyimino)-N-methylacetamide, a model of the aminothiazole methoxime (ATMO) side chain of third-generation cephalosporin antibacterial agents. The Ward hierarchical clustering technique yields an insightful comparison of experimental (X-ray) and calculated (energy optimized) bond lengths and bond angles. The computational chemistry methods are also compared in terms of the potential energy curves they predict for internal rotation. Clustering analysis and regression analysis are compared. The MMFF94 force field such as implemented in MacroModel is the best overall computational chemistry method at reproducing crystallographic data and conformational properties of the ATMO moiety. This work demonstrates that going to a higher level of quantum theory does not necessarily give better results and that quantum mechanical results are not necessarily better than molecular mechanics results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号