首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The CF table
Authors:Eric Hayashi  Lloyd N Trefethen  Martin H Gutknecht
Institution:1. Department of Mathematics, San Francisco State University, San Francisco, California, USA
2. Department of Mathematics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
3. Interdisciplinary Project Center for Supercomputing, ETH Zurich, Zurich, Switzerland
Abstract:Letf be a continuous function on the circle ¦z¦=1. We present a theory of the (untruncated) “Carathéodory-Fejér (CF) table” of best supremumnorm approximants tof in the classes \(\tilde R_{mn} \) of functions $${{\tilde r(z) = \sum\limits_{k = - \infty }^m {a_k z^k } } \mathord{\left/ {\vphantom {{\tilde r(z) = \sum\limits_{k = - \infty }^m {a_k z^k } } {\sum\limits_{k = 0}^n {b_k } z^k ,}}} \right. \kern-\nulldelimiterspace} {\sum\limits_{k = 0}^n {b_k } z^k ,}}$$ , where the series converges in 1< ¦z¦ <∞. (The casem=n is also associated with the names Adamjan, Arov, and Krein.) Our central result is an equioscillation-type characterization: \(\tilde r \in \tilde R_{mn} \) is the unique CF approximant \(\tilde r^* \) tof if and only if \(f - \tilde r\) has constant modulus and winding numberω≥ m+ n+1?δ on ¦z¦=1, whereδ is the “defect” of \(\tilde r\) . If the Fourier series off converges absolutely, then \(\tilde r^* \) is continuous on ¦z¦=1, andω can be defined in the usual way. For general continuousf, \(\tilde r^* \) may be discontinuous, andω is defined by a radial limit. The characterization theorem implies that the CF table breaks into square blocks of repeated entries, just as in Chebyshev, Padé, and formal Chebyshev-Padé approximation. We state a generalization of these results for weighted CF approximation on a Jordan region, and also show that the CF operator \(K:f \mapsto \tilde r^* \) is continuous atf if and only if (m, n) lies in the upper-right or lower-left corner of its square block.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号