首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the nonequilibrium phase transition in protein
Authors:E Rapis
Institution:(1) Laboratory of Applied Physics, Tel-Aviv University, Ramat-Aviv, 64230 Tel-Aviv, Israel
Abstract:Considerations are presented that support the idea that the nonequilibrium phase transition in protein is accompanied by the growth of a colloidal nanocrystal (or the vitrified phase of a liquid crystal). To date, the dynamic transition forms of protein, which are “the source of the catalytic power of enzymes,” have been poorly understood. In our experiments, we observed the dehydration (drying) of the colloid solution of protein in an open (far from thermodynamic equilibrium) one-component protein-water system. The protein in this state is found to acquire properties typical of matter self-organization, including the universal properties of colloidal nanocrystals of different nature, namely, nonequilibrium chaotic dynamics with self-replicability, autocatalysis, coherency, autowave fluctuations, synchronism, fractality, 3D epitaxial growth (stacking) of films, nucleation giving rise to blocks (cells) with shell nuclei, etc. It then follows that our realistic model of the nonequilibrium state of protein during growth of its colloidal nanocrystal provides an opportunity of studying the dynamics of the structural and energy-information features of the transition and solid colloidal nanocrystalline phases of protein. In addition, it allows researchers to gain fundamentally new information about the energy characteristics of protein under abiotic and biotic conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号