首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unravelling Local Atomic Order of the Anionic Sublattice in M(Al1−xGax)4 with M=Sr and Ba by Using NMR Spectroscopy and Quantum Mechanical Modelling
Authors:Dr Oliver Pecher  Dipl‐Chem Bernhard Mausolf  M?Sc Volker Peters  Dr Kevin Lamberts  Dipl‐Chem Alexander Korthaus  Dr Frank Haarmann
Institution:1. RWTH Aachen University, Institut für Anorganische Chemie (IAC), Aachen, Germany;2. Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany;3. Department of Chemistry, University of Cambridge, Cambridge, UK
Abstract:The quasibinary section of the intermetallic phases MAl4 and MGa4 with M=Sr and Ba have been characterised by means of X‐ray diffraction (XRD) studies and differential thermal analysis. The binary phases show complete miscibility and form solid solutions M(Al1?xGax)4 with M=Sr and Ba. These structures crystallise in the BaAl4 structure type with four‐ and five‐bonded Al and/or Ga atoms (denoted as Al(4b), Al(5b), Ga(4b), and Ga(5b), respectively) that form a polyanionic Al/Ga sublattice. Solid state 27Al NMR spectroscopic analysis and quantum mechanical (QM) calculations were applied to study the bonding of the Al centres and the influence of Al/Ga substitution, especially in the regimes with low degrees of substitution. M(Al1?xGax)4 with M=Sr and Ba and 0.925≤x≤0.975 can be described as a matrix of the binary majority compound in which a low amount of the Ga atoms has been substituted by Al atoms. In good agreement with the QM calculations, 27Al NMR investigations and single crystal XRD studies prove a preferred occupancy of Al(4b) for these substitution regimes. Furthermore, two different local Al environments were found, namely isolated Al(4b1) atoms and Al(4b2), due to the formation of Al(4b)–Al(4b) pairs besides isolated Al(4b) atoms within the polyanionic sublattice. QM calculations of the electric field gradient (EFG) using superlattice structures under periodic boundary conditions are in good agreement with the NMR spectroscopic results.
Keywords:chemical bonding  intermetallic phases  NMR spectroscopy  quantum mechanical calculations  substitutional disorder
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号