首页 | 本学科首页   官方微博 | 高级检索  
     


Non‐Porous Iron(II)‐Based Sensor: Crystallographic Insights into a Cycle of Colorful Guest‐Induced Topotactic Transformations
Authors:Santiago Rodríguez‐Jiménez  Dr. Humphrey L. C. Feltham  Prof. Sally Brooker
Affiliation:Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, Dunedin, New Zealand
Abstract:Materials capable of sensing volatile guests at room temperature by an easily monitored set of outputs are of great appeal for development as chemical sensors of small volatile organics and toxic gases. Herein the dinuclear iron(II) complex, [FeII2( L )2(CH3CN)4](BF4)4?2 CH3CN ( 1 ) [ L =4‐(4‐methylphenyl)‐3‐(3‐pyridazinyl)‐5‐pyridyl‐4H‐1,2,4‐triazole], is shown to undergo reversible single‐crystal‐to‐single‐crystal (SCSC) transformations upon exposure to vapors of different guests: 1 (MeCN)? 2 (EtOH)→ 3 (H2O)? 1 (MeCN). Whilst 1 and 2 remain dimetallic, SCSC to 3 involves conversion to a 1D polymeric chain (due to a change in L bridging mode), which, remarkably, can undergo SCSC de‐polymerization, reforming dimetallic 1 . Additionally, SC‐XRD studies of two ordered transient forms, 1TF3 and 2TF3 , confirm that guest exchange occurs by diffusion of the new guests into the non‐porous lattices as the old guests leave. These reversible SCSC events also induce color and magnetic responses. Indeed dark red 1 is spin crossover active (T1/2↓ 356 K; T1/2↑ 369 K), whilst orange 2 and yellow 3 remain high spin.
Keywords:chemical sensor  crystal engineering  reversible guest exchange  single-crystal-to-single-crystal transformation  spin crossover
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号