首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen,Phosphorus, and Fluorine Tri‐doped Graphene as a Multifunctional Catalyst for Self‐Powered Electrochemical Water Splitting
Authors:Dr Jintao Zhang  Prof Liming Dai
Institution:1. Center of Advanced Science and Engineering for Carbon (Case4carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA;2. Key Laboratory of Colloid and Interface Chemistry, Shandong University, China
Abstract:Electrocatalysts are required for clean energy technologies (for example, water‐splitting and metal‐air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri‐doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline‐coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri‐doping with N, P, and F, and simultaneously facilitates template‐free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri‐doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal‐free catalyst was further used as an OER–HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water‐splitting unit, which was powered by an integrated Zn–air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri‐doped graphene multifunctional metal‐free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s?1 for hydrogen and oxygen gas, respectively, showing great potential for practical applications.
Keywords:hydrogen evolution  oxygen evolution  oxygen reduction  water splitting  zinc–  air battery
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号