首页 | 本学科首页   官方微博 | 高级检索  
     


Probing the electronic and optical properties of silica-coated quantum dots with first-principles calculations
Authors:Dong Cunku  Li Xin  Qi Jingyao
Affiliation:Department of Chemistry, Harbin Institute of Technology, Harbin 150090, China.
Abstract:The electronic and optical natures of silica-coated semiconductor nanocrystals (Cd(2)Te(2)@(SiO(2))(24)) have been investigated by density functional theory (DFT) and time-dependent DFT calculations. The calculated results of Cd(2)Te(2)@(SiO(2))(24) have revealed that the structural synergy effect between the Cd(2)Te(2) quantum dots (QDs) and the silica coating shell plays a dominant role in the photoelectric properties. The binding of embedded Cd(2)Te(2) to the outer silica coating shell leads to the distortion of the silica nanocage, indicating strong coupling between the QDs and silica shell. The optical features of Cd(2)Te(2) clusters and Cd(2)Te(2)@(SiO(2))(24) complexes were evaluated using the time-dependent DFT method. It is determined that the maximal absorption peak of isolated Cd(2)Te(2) in a UV-Vis absorption spectrum appears at 584 nm, which shifts to 534 nm when the Cd(2)Te(2) QDs were encapsulated by silica, in close agreement with the experimental evidence. The excited process has a direct electronic transition character from the occupied Cd(2)Te(2) states to the outer silica nanocage excited states (core → shell electronic transitions). A deep insight into silica-coated QD systems is beneficial for understanding their optical nature and the development of core/shell QDs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号