首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decentralized direct adaptive fuzzy control of robots using voltage control strategy
Authors:Mohammad Mehdi Fateh  Sara Fateh
Institution:1. Department of Electrical and Robotic Engineering, Shahrood University of Technology, University Street, 3619995161, Shahrood, Iran
Abstract:Decentralized control is the most favorite control of robot manipulators due to computational simplicity and ease of implementation. Beside that, adaptive fuzzy control efficiently controls uncertain nonlinear systems. These motivate us to design a decentralized fuzzy controller. However, there are some challenging problems to guarantee stability. The state-space model of the robotic system including the robot manipulator and motors is in a noncompanion form, multivariable, highly nonlinear, and heavily coupled with a variable input gain matrix. For this purpose, adaptive fuzzy control may use all variable states. As a result, it suffers from computational burden. To overcome the problems, we present a novel decentralized Direct Adaptive Fuzzy Control (DAFC) of electrically driven robot manipulators using the voltage control strategy. The proposed DAFC is simple, in a decentralized structure with high-accuracy response, robust tracking performance, and guaranteed stability. Instead of all state variables, only the tracking error of every joint and its derivative are given as the inputs of the controller. The proposed DAFC is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results verify superiority of the decentralized DAFC to a decentralized PD-fuzzy controller.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号