首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computing proximal points of nonconvex functions
Authors:Warren Hare  Claudia Sagastizábal
Institution:1. Department of Computing and Software, McMaster University, 1200 Main St. W, Hamilton, ON, L8N 3Z5, Canada
2. IMPA, Estrada Dona Castorina 110, Jardim Botanico, Rio de Janeiro, RJ, 22460-320, Brazil
Abstract:The proximal point mapping is the basis of many optimization techniques for convex functions. By means of variational analysis, the concept of proximal mapping was recently extended to nonconvex functions that are prox-regular and prox-bounded. In such a setting, the proximal point mapping is locally Lipschitz continuous and its set of fixed points coincide with the critical points of the original function. This suggests that the many uses of proximal points, and their corresponding proximal envelopes (Moreau envelopes), will have a natural extension from convex optimization to nonconvex optimization. For example, the inexact proximal point methods for convex optimization might be redesigned to work for nonconvex functions. In order to begin the practical implementation of proximal points in a nonconvex setting, a first crucial step would be to design efficient methods of approximating nonconvex proximal points. This would provide a solid foundation on which future design and analysis for nonconvex proximal point methods could flourish. In this paper we present a methodology based on the computation of proximal points of piecewise affine models of the nonconvex function. These models can be built with only the knowledge obtained from a black box providing, for each point, the function value and one subgradient. Convergence of the method is proved for the class of nonconvex functions that are prox-bounded and lower- ${\mathcal{C}}^2$ and encouraging preliminary numerical testing is reported.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号