首页 | 本学科首页   官方微博 | 高级检索  
     


Surface analysis of films and film systems produced by pulsed laser deposition
Authors:D. A. Wesner, W. Pfleging, T. Klotzbü  cher  E. W. Kreutz
Affiliation:(1) Lehrstuhl für Lasertechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen, Steinbachstrasse 15, D-52074 Aachen, Germany
Abstract:Ceramic films and film systems (ZrO2 films, ZrO2/Ti multilayers, and BN films) are deposited by pulsed laser deposition (PLD) and analyzed using X-ray photoelectron (XPS), Auger electron (AES), and micro-Raman spectroscopies. The electron spectroscopies are used to determine the film stoichiometry, the nature of the bonding, and to specify contaminant species. The micro-Raman spectroscopy gives information on crystal structure, grain size, and mechanical stress within the films. In ZrO2 films a stoichiometry is achieved with typically 5%, with only weak dependencies on processing variables. The only contaminants are a small amount of water from the ambient gas and a carbonaceous surface layer. Multilayers consisting of alternating ZrO2 and Ti layers exhibit a TiC contamination within the Ti layers. Depending on the processing variables, BN films may be nearly stoichiometric or may have significant, even dominant contaminations throughout the film from elemental B, B2O3, and/or a boron-oxynitride species. The first component is due to the non-stoichiometric material removal from the target (N-depletion) at low laser fluences, as confirmed by XPS measurements on irradiated targets. The second and third arise from H2O in the ambient, and exhibit a complex dependence on processing variables. Micro-Raman spectra show only amorphous or hexagonalphase BN. Depending on the position on the substrate relative to the laser-induced vapour/plasma plume, there may be a particle deposition or mechanical stress within the films, as evidenced from large shifts (up to 15 cm–1) of the Raman spectral peaks.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号