首页 | 本学科首页   官方微博 | 高级检索  
     


Solving Equations of Free Vibration for a Cylindrical Shell Rotating on Rollers by the Fourier Method
Authors:S. B. Filippov
Affiliation:1.St. Petersburg State University,St. Petersburg,Russia
Abstract:The small free vibrations of an infinite circular cylindrical shell rotating about its axis at a constant angular velocity are considered. The shell is supported on n absolutely rigid cylindrical rollers equispaced on its circle. The roller-supported shell is a model of an ore benefication centrifugal concentrator with a floating bed. The set of linear differential equations of vibrations is sought in the form of a truncated Fourier series containing N terms along the circumferential coordinate. A system of 2Nn linear homogeneous algebraic equations with 2Nn unknowns is derived for the approximate estimation of vibration frequencies and mode shapes. The frequencies ω k , k = 1, 2, …, 2Nn, are positive roots of the (2Nn)th-order algebraic equation D2) = 0, where D is the determinant of this set. It is shown that the system of 2Nn equations is equivalent to several independent systems with a smaller number of unknowns. As a consequence, the (2Nn)th-order determinant D can be written as a product of lower-order determinants. In particular, the frequencies at N = n are the roots of algebraic equations of an order is lower than 2 and can be found in an explicit form. Some frequency estimation algorithms have been developed for the case of N > n. When N increases, the number of found frequencies also grows, and the frequencies determined at N = n are refined. However, in most cases, the vibration frequencies can not be found for N > n in an explicit form.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号