首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anchoring Fe Ions to Amorphous and Crystalline Oxides: A Means To Tune the Degree of Fe Coordination
Abstract:We report on an IR spectroscopic study on the room‐temperature adsorption of NO on different iron(II )‐containing siliceous matrices. Fe2+ hosted inside the channels of MFI‐type zeolites (Fe‐ZSM‐5 and Al‐free Fe‐silicalite) exhibits pronounced coordinative unsaturation, as witnessed by the capability to form, at 300 K, Fe2+(NO)], Fe2+(NO)2] and Fe2+(NO)3] complexes with increasing NO equilibrium pressure. Fe2+ hosted on amorphous supports (high surface area SiO2 and MCM‐41) sinks more deeply into the surface of the siliceous support and thus exhibits less pronounced coordinative unsaturation: only Fe2+(NO)2] complexes were observed, even at the highest investigated NO equilibrium pressures. Activation at higher temperature (1073 K) of the Al‐free Fe‐silicalite sample resulted in the appearance of Fe2+ species similar to those observed on SiO2 and MCM‐41, and this suggests that local (since not detectable by X‐ray diffraction) amorphisation of the environment around Fe2+ anchoring sites occurs. The fact that this behaviour is not observed on the Fe‐ZSM‐5 sample activated at the same temperature suggests that framework Al species (and their negatively charged oxygen environment) have an important role in anchoring extraframework Fe2+ species. Such an anchoring phenomenon will prevent a random migration of iron species, with subsequent aggregation and loss of coordinative unsaturation. These observations can thus explain the higher catalytic activity of the Fe‐ZSM‐5 system in one‐step benzene to phenol conversion when compared with the parent, Al‐free, Fe‐silicalite system with similar Fe content. The nature of the support and the activation temperature can therefore be used as effective means to tune the degree of Fe coordination.
Keywords:heterogeneous catalysis  iron  IR spectroscopy  nitrogen oxides  zeolites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号