首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesostructured Dye‐Doped Titanium Dioxide for Micro‐Optoelectronic Applications
Abstract:Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g?1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye‐doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer‐to‐aggregate ratio at elevated dye concentrations. The dye‐doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye‐doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high‐refractive index, mesostructured, dye‐doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.
Keywords:mesoporous materials  microlasers  soft lithography  thin films  titanium dioxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号