首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cyclization Triggered by Deprotonation: The Gas‐Phase Acidity of 1,8‐Chalcogen‐Bridged Naphthalenes
Abstract:High‐level density functional theory computations have been used to estimate the gas‐phase (intrinsic) acidities of the complete series of 1,8‐chalcogen‐bridged naphthalene derivatives. The existence of a chalcogen? chalcogen bond in chalcogen‐bridged naphthalene derivatives plays a crucial role in the intrinsic acidity of the system. For 1,8‐naphthalenediylbis(oxy), where this bond does not exist, the para C? H group is the most acidic site, whereas for the remaining compounds, deprotonation of the ortho CH groups is the most favorable process. Deprotonation of the aromatic rings has a large effect on the strength of the bonds of the five‐membered ring. These effects depend on the nature of the heteroatoms forming the X? Y bridge, and modulate the acidity of the molecule. Also importantly, when one of the heteroatoms is oxygen, ortho and para deprotonation lead to cleavage of the X? Y bridge. This bond fission favors the formation of a CYC (Y=S, Se, Te) three‐membered ring that enhances the stability of the anion and, therefore, increases the acidity of these compounds. We have shown that, whereas this cyclization process is energetically favorable for oxygen‐containing compounds, it is not favorable for the remaining derivatives.
Keywords:acidity  chalcogens  cyclization  density functional calculations  naphthalenes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号