首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-recognition and hydrogen bonding by polycyclic bridgehead monoalcohols
Authors:García Fraile Amelia  Morris David G  García Martínez Antonio  de la Moya Cerero Santiago  Muir Kenneth W  Ryder Karl S  Teso Vilar Enrique
Institution:Departamento de Química Orgánica y Biología, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey 9, 28040-Madrid, Spain.
Abstract:Our interest in the relationship between the hydrogen bonding motifs displayed by monoalcohols and the properties of the solids which contain these motifs has led us to determine the crystal structures of three polycyclic bridgehead monoalcohols. One C10H16O isomer crystallises in the space group P2(1)2(1)2(1) but the three molecules which comprise the asymmetric unit are related approximately by the operations of a 3(1) screw axis. They are linked by hydrogen bonds to form an infinite helix. A second C10H16O isomer forms rings containing four molecules joined by cooperative hydrogen bonds. The chiral space group P4(1)2(1)2 accommodates molecules of the S,S and R,R enantiomers in the molar ratio 92:8 (ee 84%) owing to disorder. A related C9H14O2 keto-alcohol forms infinite chains by C-OH...O = C hydrogen bonding. These hydrogen bond motifs are shown to be typical for 45 tertiary monoalcohols, CmHnOH, present in the Cambridge Structural Database. Tertiary monoalcohols display in a more pronounced form the strong preferences for trigonal and tetragonal space groups and for asymmetric units containing several molecules which are established features of the crystallochemistry of monoalcohols.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号