首页 | 本学科首页   官方微博 | 高级检索  
     


Air-facilitated three-phase contact formation at hydrophobic solid surfaces under dynamic conditions
Authors:Krasowska M  Krastev R  Rogalski M  Malysa K
Affiliation:Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland.
Abstract:The paper presents results documenting the mechanism of facilitation of the three-phase contact (TPC) formation due to gas entrapped during immersion of hydrophobic (Teflon) plates into distilled water and n-octanol solutions. Collisions, bouncing, the time scale of the TPC formation, and bubble attachment to Teflon plates of different surface roughness were studied using a high-speed camera. Processes occurring during the microscopic wetting film formation at the Teflon plates were monitored using the microinterferometric method (Scheludko-Exerowa cell). A strong relation between the time necessary to form a stable TPC and the roughness of the Teflon was observed. The higher the Teflon roughness was the shorter the time for the TPC formation. This effect can be attributed to two factors: (i) local differences in the thickness of the thinning intervening liquid layer (quicker attainment of rupture thickness at pillars of rough surface) and/or (ii) the presence of gas at the hydrophobic surface. Experimental findings, that (i) prolongation of the plate immersion time resulted in quicker TPC formation, (ii) white irregular and disappearing spots (air pockets) were recorded during the wetting film formation, and (iii) high n-octanol concentration caused prolongation of the time of the TPC formation, show that attachment (TPC formation) of the colliding bubble to hydrophobic surfaces was facilitated by air entrapped at the Teflon plates (and re-distributed) during their immersion into water phase. Thus, on collision instead of solid/gas wetting liquid film a thin gas/liquid/gas foam film was formed which facilitated the TPC formation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号