首页 | 本学科首页   官方微博 | 高级检索  
     


Denoising deep extreme learning machine for sparse representation
Authors:Xiangyi Cheng  Huaping Liu  Xinying Xu  Fuchun Sun
Affiliation:1.Department of Electronic Information,Taiyuan University of Technology,Shanxi,China;2.State Key Laboratory of Intelligent Technology and Systems, TNLIST,Department of Computer Science and Technology, Tsinghua University,Beijing,People’s Republic of China
Abstract:In recent years, a great deal of research has focused on the sparse representation for signal. Particularly, a dictionary learning algorithm, K-SVD, is introduced to efficiently learn an redundant dictionary from a set of training signals. Indeed, much progress has been made in different aspects. In addition, there is an interesting technique named extreme learning machine (ELM), which is an single-layer feed-forward neural networks (SLFNs) with a fast learning speed, good generalization and universal classification capability. In this paper, we propose an optimization method about K-SVD, which is an denoising deep extreme learning machines based on autoencoder (DDELM-AE) for sparse representation. In other words, we gain a new learned representation through the DDELM-AE and as the new “input”, it makes the conventional K-SVD algorithm perform better. To verify the classification performance of the new method, we conduct extensive experiments on real-world data sets. The performance of the deep models (i.e., Stacked Autoencoder) is comparable. The experimental results indicate the fact that our proposed method is very efficient in the sight of speed and accuracy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号