A view and a review of the melting of alkali metal halide crystals |
| |
Authors: | A. K. Galwey |
| |
Affiliation: | (1) Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa |
| |
Abstract: | Summary Although melting is a most familiar physical phenomenon, the nature of the structural changes that occur when crystals melt are not known in detail. The present article considers the structural implications of the changes in physical properties that occur at the melting points, Tm, of the alkali halides. This group of solids was selected for comparative examination because the simple crystal lattices are similar and reliable data are available for this physical change. For most of these salts, the theoretical lattice energies for alternative, regular ionic packing in 4:4, 6:6 and 8:8 coordination arrangements are comparable. Density differences between each solid and liquid at Tmare small. To explain the pattern of quantitative results, it is suggested that the melt is composed of numerous small domains, within each of which the ions form regular (crystal-type) structures (regliq). The liquid is portrayed as an assemblage of such domains representing more than a single coordination structure and between which dynamic equilibria maintain continual and rapid transfers of ions. Tmis identified as the temperature at which more than a single (regular) structure can coexist. The interdomain (imperfect and constantly rearranging) material (irregliq) cannot withstand shear, giving the melt its fluid, flow properties. From the physical evidence, it is demonstrated that the structural changes on melting are small: these can accommodate only minor modifications of the dispositions of all, or most, ions or larger changes for only a small fraction. This proposed representation, the set/liq melt model, may have wider applicability. |
| |
Keywords: | melting melting point fusion alkali halide melt structure |
本文献已被 SpringerLink 等数据库收录! |
|