首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers
Authors:Jorge Serrano  Javier Moros  Carlos Sánchez  Jorge Macías  J Javier Laserna
Institution:1. Department of Analytical Chemistry, University of Málaga, E-29071 Málaga, Spain;2. Department of Mathematical Analysis, University of Málaga, E-29071 Málaga, Spain
Abstract:The large similarity existing in the spectral emissions collected from organic compounds by laser-induced breakdown spectroscopy (LIBS) is a limiting factor for the use of this technology in the real world. Specifically, among the most ambitious challenges of today's LIBS involves the recognition of an organic residue when neglected on the surface of an object of identical nature. Under these circumstances, the development of an efficient algorithm to disclose the minute differences within this highly complex spectral information is crucial for a realistic application of LIBS in countering explosive threats. An approach cemented on scatter plots of characteristic emission features has been developed to identify organic explosives when located on polymeric surfaces (teflon, nylon and polyethylene). By using selected spectral variables, the approach allows to design a concise classifier for alerting when one of four explosives (DNT, TNT, RDX and PETN) is present on the surface of the polymer. Ordinary products (butter, fuel oil, hand cream, olive oil and motor oil) cause no confusion in the decisions taken by the classifier. With rates of false negatives and false positives below 5%, results demonstrate that the classification algorithm enables to label residues according to their harmful nature in the most demanding scenario for a LIBS sensor.
Keywords:Laser-induced breakdown spectroscopy  Explosives  Confusants  Polymer surfaces  Machine learning classifiers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号