首页 | 本学科首页   官方微博 | 高级检索  
     


Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods
Authors:Jian Ma  Mrinal K. Sengupta  Dongxing Yuan  Purnendu K. Dasgupta
Affiliation:1. State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;2. Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019, United States;3. Thermo Fisher Scientific, Dionex Products, 445 Lakeside Drive, Sunnyvale, CA, 94085, United States
Abstract:Inorganic arsenic (As) displays extreme toxicity and is a class A human carcinogen. It is of interest to both analytical chemists and environmental scientists. Facile and sensitive determination of As and knowledge of the speciation of forms of As in aqueous samples are vitally important. Nearly every nation has relevant official regulations on permissible limits of drinking water As content. The size of the literature on As is therefore formidable. The heart of this review consists of two tables: one is a compilation of principal official documents and major review articles, including the toxicology and chemistry of As. This includes comprehensive official compendia on As speciation, sample treatment, recommended procedures for the determination of As in specific sample matrices with specific analytical instrument(s), procedures for multi-element (including As) speciation and analysis, and prior comprehensive reviews on arsenic analysis. The second table focuses on the recent literature (2005–2013, the coverage for 2013 is incomplete) on As measurement in aqueous matrices. Recent As speciation and analysis methods based on spectrometric and electrochemical methods, inductively coupled plasma-mass spectrometry, neutron activation analysis and biosensors are summarized. We have deliberately excluded atomic optical spectrometric techniques (atomic absorption, atomic fluorescence, inductively coupled plasma-optical emission spectrometry) not because they are not important (in fact the majority of arsenic determinations are possibly carried out by one of these techniques) but because these methods are sufficiently mature and little meaningful innovation has been made beyond what is in the officially prescribed compendia (which are included) and recent reviews are available.
Keywords:AAPTS, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane   AES, atomic emission spectrometry   APDC, ammonium pyrrolidine dithiocarbamate   ASV, anodic stripping voltammetry   ATR-FTIR, attenuated total reflectance Fourier transform infrared spectroscopy   AuNP, gold nanoparticle   BGE, background electrolyte   CCD, charge-coupled device   CE, capillary electrophoresis   CME, capillary microextraction   CNFs, carbon nanofibers   CRM, certified reference material   CSV, cathodic stripping voltammetry   CTAB, cetyltimethylammonium bromide   DGT, diffusive gradients in thin films   DMA, dimethylarsinic acid   DS, diffusion scrubber   DTT, dithiothreitol   ETV, electrothermal vaporization   FI, flow injection   GCE, glassy carbon electrode   GFAAS, graphite furnace atomic absorption   GPCL, Gas phase chemiluminescence   GSH, glutathione   HG, hydride generation   HGAAS, hydride generation atomic absorption spectrometry   HGAFS, hydride generation atomic fluorescence spectrometry   HPLC, high performance liquid chromatography   IC, ion chromatography   ICP-MS, inductively coupled plasma-mass spectrometry   LIBS, laser-induced breakdown spectroscopy   LLME, liquid&ndash  liquid microextraction   LOD, limit of detection   LPCL, liquid phase chemiluminescence   LSV, linear sweep voltammetry   MA, mercaptoacetic acid   MB, molybdenum blue   MCL, maximum contaminant level   MDL, method detection limit   MMA, monomethylarsonic acid   MPTS, mercaptopropyltrimethoxysilane   NAA, neutron activation analysis   NaDBC, sodium dibenzyldithiocarbamate   PMT, photomultiplier tube   PTFE, polytetrafluoroethylene   QDs, quantum dots   RTIL, room temperature ionic liquid   SAM, self-assembled monolayer   SBSE, solvent bar microextraction   SERS, surface-enhanced Raman spectroscopy   SPE, solid phase extraction   SPME, solid phase microextraction   SPR, surface plasmon resonance   SWASV, square wave anodic stripping voltammetry   SWNTs, single-wall carbon nanotubes   TMAO, trimethylarsine oxide   TXRF, total reflection X-ray fluorescence spectrometry   USEPA, United States Environmental Protection Agency   UV, ultra violet   VMoAs-HPA, vanadomolybdoarsenic heteropoly acid   WHO, World Health Organization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号