首页 | 本学科首页   官方微博 | 高级检索  
     


On the Debye-Waller factor of hexagonal ice: a computer simulation study
Authors:Tanaka Hideki  Mohanty Udayan
Affiliation:Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
Abstract:We investigate by molecular dynamics (MD) simulations the temperature dependence of the Debye-Waller (DW) factor of hexagonal ice with 25 different proton-disordered configurations. Each initial configuration is composed of 288 water molecules with no net dipole moment. The intermolecular interaction of water is described by TIP4P potential. Each production run of the simulation is 15 ns or longer. We observe a change in slope of the DW factor around 200 K, which cannot be explained within the framework of either classical or quantum harmonic approximation. Configurations generated by MD simulations are subjected to the steepest descent energy minimization. Analysis of the local energy minimum structures reveals that water molecules above 200 K jump to other lattice sites via some local energy minimum structures which contain some water molecules sitting on the locations other than the lattice sites. As time evolves, these defect molecules move back and forth to the lattice sites yielding defect-free structures. Those motions are responsible for the unusual increase in the DW factor at high temperatures. In making a transition from an energy-minimum structure to another one, a small number of water molecules are involved in a highly cooperative fashion. The larger DW factor at higher temperature arises from jump-like motions of water molecules among these locally stable configurations which may or may not be a family of the proton-disordered ice forms satisfying the "ice rule".
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号