首页 | 本学科首页   官方微博 | 高级检索  
     


Injection moulding of plastics
Authors:H. Janeschitz-Kriegl
Affiliation:(1) Institut für Physikalische Chemie, Johannes-Kepler-Universität Linz, Altenberger Straße 69, A-4045 Linz, Austria
Abstract:Summary In continuation of a previous investigation a simple analytical expression is derived in closed form for the thickness distribution of the ldquofreeze-offrdquo layer which is vitrified at the (flat) wall of an oblong rectangular cavity. As has been pointed out previously, this layer is marked for amorphous polymers by the molecular orientation (birefringence pattern) in the moulded sample. One can show that a more detailed study with the aid of the coupled equations of energy and of motion will not furnish essential improvements. Problems of polymer physics like glass transition or crystallization kinetics at extreme rates of cooling and shearing must be solved first.
Zusammenfassung In Fortsetzung einer früheren Untersuchung wurde ein einfacher analytischer Ausdruck in geschlossener Form für die Dickenverteilung der ldquoreingefrorenenldquo Schicht abgeleitet, die an der (flachen) Wand eines langgestreckten rechteckigen Formnestes während des Einspritzvorgangs glasig erstarrt. Wie früher auseinandergesetzt wurde, wird diese Schicht bei amorphen Polymeren durch die Molekülorientierung (Doppelbrechungsmuster) im gespritzten Formteil markiert. Man kann zeigen, daß eine eingehendere Studie mit Hilfe der gekoppelten Energie- und Impulsgleichungen keine essentiellen Verbesserungen bringt. Probleme der Polymerphysik, wie Glasübergang oder Kristallisationskinetik bei extremen Abkühlungs- und Schergeschwindigkeiten, müssen erst gelöst werden.

List of Symbols a heat diffusivity of polymer melt (averaged overT) [m2s–1] - B breadth of mould cavity [m] - Br Brinkman number (
$$2P'bar upsilon H^2 /lambda (T_i  - T_l )$$
) - c heat capacity of polymer melt (averaged overT) [J kg–1 K–1] - F0 Fourier number (ati/4H2) - hpar heat transfer coefficient by melt flow [J K–1 s–1 m–2] - hbottom heat transfer coefficient by layer growth [J K–1 s–1 m–2] - H half height of mould cavity [m] - L length of mould cavity [m] - n exponent in eq. [18] (= 0.417) - Nu Nußelt number (2Hh/lambda) - Pprime pressure gradientdP/dz in mould [N m–3] - t time [s] - ti injection time [s] - Tg glass transition temperature of polymer [K] - Ti injection temperature of polymer melt [K] - Tl stagnation temperature [K] - Tm mould wall temperature [K] - 
$$bar upsilon $$
speed of flow front during mould filling [m s–1] - x coordinate perpendicular to mould wall [m] - z coordinate in the injection direction [m] - delta thickness of stagnant layer (atTl) [m] - delta0 optically detectable freeze-off thickness [m] - delta+ apparent layer thickness (atTi) [m] - Delta dimensionless freeze-off thickness (=delta0/2H) - zeta dimensionless distance from entrance (=z/L) - zetam dimensionless coordinate of layer maximum - thetag dimensionless temperature (= (TiTl)/(TgTm)) - thetai dimensionless temperature (= (TiTl)/(TiTm)) - thetal dimensionless temperature (= (TiTl)/(TlTm)) - eegri viscosity of polymer atTi [N s m–3] - eegrl viscosity of polymer atTl [N s m–3] - lambda heat conductivity of polymer melt (averaged) [J K–1 s–1 m–1] - rgr density of polymer melt (averaged) [kg m–3] - tau dimensionless time (eq. [11]) - tau+ dimensionless parameter (eqs. [19a] and [19b]) - psgr dimensionless layer thickness (eq. [12]) - psgr+ dimensionless parameter (eq. [20a]) - OHgr dimensionless parameter (eqs. [11a] and [11b])Formerly at Delft University of Technology, Delft (The Netherlands).Paper presented at the Conference on Chemical Engineering Rheology, Annual Meeting of the Deutsche Rheologische Gesellschaft in Aachen, March 5–7, 1979.With 3 figures and 1 table
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号