Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals |
| |
Authors: | Owen Jonathan S Chan Emory M Liu Haitao Alivisatos A Paul |
| |
Affiliation: | Department of Chemistry, University of California, Berkeley, California 94720, USA. |
| |
Abstract: | The kinetics of cadmium selenide (CdSe) nanocrystal formation was studied using UV-visible absorption spectroscopy integrated with an automated, high-throughput synthesis platform. Reaction of anhydrous cadmium octadecylphosphonate (Cd-ODPA) with alkylphosphine selenides (1, tri-n-octylphosphine selenide; 2, di-n-butylphenylphosphine selenide; 3, n-butyldiphenylphosphine selenide) in recrystallized tri-n-octylphosphine oxide was monitored by following the absorbance of CdSe at λ = 350 nm, where the extinction coefficient is independent of size, and the disappearance of the selenium precursor using {(1)H}(31)P NMR spectroscopy. Our results indicate that precursor conversion limits the rate of nanocrystal nucleation and growth. The initial precursor conversion rate (Q(o)) depends linearly on [1] (Q(o)(1) = 3.0-36 μM/s) and decreases as the number of aryl groups bound to phosphorus increases (1 > 2 > 3). Changes to Q(o) influence the final number of nanocrystals and thus control particle size. Using similar methods, we show that changing [ODPA] has a negligible influence on precursor reactivity while increasing the growth rate of nuclei, thereby decreasing the final number of nanocrystals. These results are interpreted in light of a mechanism where the precursors react in an irreversible step that supplies the reaction medium with a solute form of the semiconductor. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|