首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zirconium((IV)) and Hafnium((IV)) Porphyrin and Phthalocyanine Complexes as New Dyes for Solar Cell Devices
Authors:Ivana Radivojevic  Giorgio Bazzan  Benjamin P Burton-Pye  Kemakorn Ithisuphalap  Raihan Saleh  Michael F Durstock  Lynn C Francesconi  Charles Michael Drain
Institution:Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433, The Rockefeller University, New York, New York 10065.
Abstract:Metalloporphyrin and metallophthalocyanine dyes ligating Hf(IV) and Zr(IV) ions bind to semiconductor oxide surfaces such as TiO(2) via the protruding group IV metal ions. The use of oxophylic metal ions with large ionic radii that protrude from the macrocycle is a unique mode of attaching chromophores to oxide surfaces in the design of dye-sensitized solar cells (DSSCs). Our previous report on the structure and physical properties of ternary complexes wherein the Hf(IV) and Zr(IV) ions are ligated to both a porphyrinoid and to a defect site on a polyoxometalate (POM) represents a model for this new way of binding dyes to oxide surfaces. The Zr(IV) and Hf(IV) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) with two ligated acetates, (TPP)Hf(OAc)(2) and (TPP)Zr(OAc)(2), and the corresponding metallophthalocyanine (Pc) diacetate complexes, (Pc)Hf(OAc)(2) and (Pc)Zr(OAc)(2), were evaluated as novel dyes for the fabrication of dye-sensitized solar cells. Similarly to the ternary complexes with the POM, the oxide surface replaces the acetates to affect binding. In DSSCs the Zr(IV) phthalocyanine dye performs better than the Zr(IV) porphyrin dye, and reaches an overall efficiency of ~ 1.0%. The Hf(IV) dyes are less efficient. The photophysical properties of these complexes in solution suggested energetically favorable injection of electrons into the conduction band of TiO(2) semiconductor nanoparticles, as well as a good band gap match with I(3) (-)/I(-) pair in liquid 1-butyl-3-methyl imidazolium iodide. The combination of blue absorbing TPP with the red absorbing Pc complexes can increase the absorbance of solar light in the device; however, the overall conversion efficiency of DSSCs using TiO(2) nanoparticles treated with a mixture of both Zr(IV) complexes is comparable, but not greater than, the single (Pc)Zr. Thus, surface bound (TPP)Zr increases the absorbance in blue region of the spectra, but at the cost of diminished absorbance in the red in this DSSC architecture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号