首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and Application of Novel Chiral Poly-nuclear-Mn(Ⅲ) Catalysts on Asymmetric Epoxidation of Alkenes
Authors:LIU Xin-wen  Tang Ning
Institution:1. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;College of Life Sciences and Chemistry, Tianshui Normal University, Tianshui 741000, China
2. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
Abstract:The interest of the coordination chemistry of manganese has been driver by the important roles of metalloenzymes and highly valuable catalysts in olefin expoxidation.1 Jacobsen Salen-Mn complexes with a simple structure have been commercially utilized to catalyze asymmetric epoxidation of unfunctionalized cis-alkenes2, but the catalytic enantioselectivity for trans-alkenes, unfortunately, are lower and this kinds of complexes are unstable and difficult to be recovered for reuse.3 In order to improve the catalytic activity and recyclability, many new catalysts including the supported catalysts,heterogeneous catalysts and else modified catalysts have been studied, however their comprehensive effects are unsatisfying.4Recently, some studies in interrelated realm showed that the catalytic performance of bi- or poly-nuclear complexes was superior to that of monomer.5 Meanwhile, our previous studies also showed that properly increasing the molecular weight of catalysts as well as the extent of conjugation of active center would not only result in high activity or reactivity but also its stability and recyclablity, aiding product isolation and catalyst recovery.6For these reasons we designed and synthesized the chiral poly-Mn(Ⅲ) complexes in which active sites were conjugated in certain distance side by side though central nucleus of 4, 6-dihydroxy- isophthalaldehyde (see the scheme). These novel Mn(Ⅲ) complexes have been investigated for the first time as catalysts (lmol%)for the asymmetric epoxidation of alkenes by using pure urea-H2O2 as oxidant and NH4OAc as additive in CH2Cl2/MeOH, showing high activity and good enantioselectivity. All reactions were finished in 1.5h. Rather surprisingly, a marginal increase in ee was observed when the concentration of the substrate was increased from 0.01 to 0.5M. The poly-nuclear complex formation enhanced the catalyst's reactivity and stability. It, unlike mononuclear, could be easily recovered and reused several cycles with a decline of yield but a keep of ee's.A low concentration requirement of catalyst, high ee and chemical activity, mild reaction conditions and catalytic recycles render the kinds of complexes attractive.
Keywords:poly-nuclear complex  asymmetric epoxidation  enantioselectivity  recycle  synthesis
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号