首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic scattering from a thermally driven buoyant plume revisited
Authors:Oeschger John  Goodman Louis
Institution:Coastal Systems Station, Naval Surface Warfare Center, Dahlgren Division, Panama City, Florida 32407-7001, USA.
Abstract:Far-field weak scattering theory is applied to the case of high-frequency broad-bandwidth acoustic scattering from a thermally generated buoyant plume in a controlled laboratory environment. To first order, the dominant scattering mechanism is thermally driven sound-speed variations that are related to temperature deviations from ambient. As a result, the received complex acoustic scattering is a measure of the one-component three-dimensional Fourier transform of the temperature difference field measured at the Bragg wave number. The Bragg wave number vector is the difference between the scattered and incident wave vectors. Solving for its magnitude yields the Bragg scattering condition; this is the Fourier component of the plume variability that produces scattering. Results are presented for multistatic scattering from unstable and turbulent plumes using a parallel scattering geometry. The data justify application of the far-field weak scattering theory to the present case of a thermal plume. As a consequence, quantitative results on medium variability can be inferred using high-frequency broad-bandwidth acoustic scattering. Particular attention is given to the role of anisotropy of the variability of the scattering field in determining the validity of far-field Bragg scattering.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号