首页 | 本学科首页   官方微博 | 高级检索  
     


Cyclic voltammetry modeling, geometries, and electronic properties for metallofullerene complexes with mu3-eta2:eta2:eta2-C60 bonding mode
Authors:Kim Kyoung Hoon  Jung Jaehoon  Park Bo Keun  Han Young-Kyu  Park Joon T
Affiliation:Computational Chemistry Laboratory, Advanced Materials R&D, LG Chem. Ltd. Research Park, Daejeon 305-380, South Korea.
Abstract:Reduction potential (E(red)) values have been calculated and compared with available cyclic voltammetry (CV) data for 10 metallofullerene complexes with the mu(3)-eta(2):eta(2):eta(2)-C(60) (M(3)-C(6)[C(60)]) bonding mode. Consideration of bulk solvent effects is essential for the calculation of the E(red) values. Scaling factors for the electrostatic terms of the solvation energies have been introduced to fully describe the experimental cyclic voltammograms with a small mean deviation of 0.07 V. Multiple electron reductions induce movement of the metal cluster moieties on the C(60) surface, which is accompanied with the changes in some M-C[C(60)] bonds from pi-type to sigma-type mode. However, the changes in M(3)-C(60) distances, as well as the geometric changes of M(3) and C(60), are small for the reductions, which is in harmony with the high chemical and electrochemical stability of the metallofullerenes. Our population analyses reveal that the added electrons are not localized at the C(60) moieties, and electron population in the metal clusters is significant, more than 20% (av. 37%), for all the reductions. Furthermore, we demonstrated that the two close one-electron redox waves in CV diagrams are strongly correlated with significant electron delocalization, about 40-80%, to the metal-cluster moieties in these metallofullerene complexes.
Keywords:cyclic voltammetry  reduction potential  metallofullerene  density functional theory  electron delocalization
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号