首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrical transport properties of Fe3−xCrxO4 ferrite films on MgO (0 0 1) grown by molecular beam epitaxy
Authors:DS Lee  G Chern
Institution:a Electrical Engineering Department, Da-Yeh University, Chunghua, Taiwan, ROC
b Taiwan SPIN Research Center and Physics Department, National Chung Cheng University, Chia-Yi, Taiwan, ROC
Abstract:In this report, we fabricated a series of Fe3−xCrxO4(0≦x≦2) films by plasma-oxygen-assisted molecular beam epitaxy (MBE) and did structural and electrical characterizations of these films. These films show textured single phase quality and the lattice parameters are consistent with those of the bulk at low Cr composition (x<0.9). However, the lattice parameters show severe deviation from the bulk value in the intermediate region of 0.9≦x≦1.5 and no diffraction can be resolved at x∼2. These discrepancies may be attributed to the cation distributions and the instability of spinal structure as Cr concentration becomes dominant. The resistivity presents a typical Arrhenius temperature dependence with ρ=ρ0 exp (Ep/kBT) indicating that the transport is due to a hopping mechanism. The prefactor ρ0 increases in Fe3−xCrxO4, at smaller x but tends to level out for x>1, suggesting that Cr3+ ions may start to replace Fe3+ ions at the A site in the high x region. The activation energy of electrical hopping gradually increases at low Cr concentration but abruptly rises to ∼110 meV at x>0.9, suggesting a crossover from electron-hopping mediated transport to a thermally activated band gap excitation.
Keywords:Ferrite films  Spinel structure  Cation distribution  Electrical transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号