首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison and correction of the drop breakup models for stochastic dilute spray flow
Authors:Min Wook Lee  Jung Jae Park  Massoud Massoudi Farid  Sam S Yoon
Institution:1. Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea;2. Mechanical Engineering Department, Yonsei University, Seoul, Republic of Korea
Abstract:Spray–gas interaction is common in many industrial applications that use a liquid jet injection system. Numerous liquid drops interact with the surrounding gas as they travel through the air. During such a travel, aerodynamic interaction between a drop and the surrounding gas flattens the drop and ultimately, breaks up the drop. The TAB (Taylor Analogy Breakup) model was proposed by O’Rourke and Amsden (1987) 6] for the KIVA spray code, but the use of this model has been controversial because the original paper that proposed this model has typographical errors. Another well-known drop breakup model, such as the DDB (Drop Deformation Breakup) model of Ibrahim et al. (1993) 8], has been widely used. However, although numerical solutions of the DDB model ostensibly make it appear superior to those of other previous breakup models, they contain errors that need to be amended. This paper aims to clarify the error controversies of both models; the typographical errors and the erroneous numerical solutions. The complete mathematical derivation of the TAB model is presented, and its correct numerical solutions are compared against the experimental data. We found that the TAB model was superior to other breakup models, such as Clark (1988) 7] and DDB.
Keywords:Drop  Aerodynamic drag  Breakup model  Secondary atomization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号