首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equations of anisotropic elastodynamics as a symmetric hyperbolic system: Deriving the time-dependent fundamental solution
Authors:VG Yakhno  H Çerdik Yaslan
Institution:
  • a Engineering Faculty of Dokuz Eylul University, Kaynaklar, BUCA, 35160, Izmir, Turkey
  • b Department of Mathematics, Dokuz Eylul University, Kaynaklar, Buca, 35160, Izmir, Turkey
  • Abstract:The dynamic system of anisotropic elasticity from three second order partial differential equations is written in the form of the time-dependent first order symmetric hyperbolic system with respect to displacement velocity and stress components. A new method of deriving the time-dependent fundamental solution of the obtained system is suggested in this paper. This method consists of the following. The Fourier transform image of the fundamental solution with respect to a space variable is presented as a power series expansion relative to the Fourier parameters. Then explicit formulae for the coefficients of these power series are derived successively. Using these formulae the computer calculation of fundamental solution components (displacement velocity and stress components arising from pulse point forces) has been made for general anisotropic media (orthorhombic and monoclinic) and the simulation of elastic waves has been obtained. These computational examples confirm the robustness of the suggested method.
    Keywords:Anisotropic elasticity  Dynamic system  Fundamental solution  Wave simulation
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号