首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase transition temperature controllable poly(acrylamide-<Emphasis Type="Italic">co</Emphasis>-acrylic acid) nanocomposite physical hydrogels with high strength
Authors:Li-qin Zhang  Li-wen Chen  Ming Zhong  Fu-kuan Shi  Xiao-ying Liu  Xu-ming Xie
Institution:Laboratory of Advanced Materials(MOE), Department of Chemical Engineering,Tsinghua University, Beijing 100084, China
Abstract:Poly(acrylamide-co-acrylic acid) nanocomposite physical (P(AAm-co-AAc)NCP) hydrogels have been prepared through the in situ free radical solution polymerization based on a “single network, dual cross-linkings” strategy. The P(AAm-co-AAc) NCP hydrogels are composed of nanobrushes of P(AAm-co-AAc) chains grafted on the surface of vinylhybrid silica nanoparticles (VSNPs). In the hydrogel system, the VSNPs act as the “analogous chemical cross-linking points” once the hydrogen bonds formed between the P(AAm-co-AAc) chains of the nanobrushes, thus leading to the fabrication of high-strength P(AAm-co-AAc) NCP hydrogels. Compared with conventional thermosensitive P(AAm-co-AAc) hydrogels, the P(AAm-co-AAc) NCP hydrogels have a broader range of phase transition temperature, which can be adjusted by altering the monomer ratio, the VSNPs concentration, the addition of urea and N,N-dimethylacrylamide (DMAAm). At the same time, the mechanical properties of the P(AAm-co-AAc) NCP hydrogels have been improved significantly by the introduction of VSNPs. Furthermore, both the phase transition and the tensile strength of the P(AAm-co-AAc) NCP hydrogels are largely influenced when Fe3+ ions are introduced as the ionic crosslinkers into the hydrogel networks.
Keywords:Poly(acrylamide-co-acrylic acid)  Nanocomposite physical hydrogels  Phase transition  High strength
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号