首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grid-based Thomas-Fermi-Amaldi equation with the molecular cusp condition
Authors:Kim Min Sung  Youn Sung-Kie  Kang Jeung Ku
Institution:Department of Mechanical Engineering, KAIST, Daejeon 305-701, Republic of Korea.
Abstract:First, the Thomas-Fermi-Amaldi (TFA) equation was formulated with a newly derived condition to remove the singularities at the nuclei, which coincided with the molecular cusp condition. Next, the collocation method was applied to the TFA equation using the grid-based density functional theory. In this paper, the electron densities and the radial probabilities for specific atoms (He, Be, Ne, Mg, Ar, Ca) were found to agree with those from the Thomas-Fermi-Dirac (TFD) method. Total energies for specific atoms (He, Ne, Ar, Kr, Xe, Rn) and molecules (H2,CH4) were also found to be close to those from the Hartree-Fock method using the Pople basis set 6-311G relative to the TFD method. In addition, the computational expense to determine the electron density and its corresponding energy for a large scale structure, such as a carbon nanotube, is shown to be much more efficient compared to the conventional Hartree-Fock method using the 6-31G Pople basis set.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号