首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water
Authors:Mezyk Stephen P  Ewing Daryl B  Kiddle James J  Madden Keith P
Institution:Department of Chemistry and Biochemistry, California State University at Long Beach, 1250 Bellflower Blvd, 90840, USA. smezyk@csulb.edu
Abstract:Absolute rate constants for hydroxyl radical, *OH, and hydrated electron, e(aq)(-), reactions with low-molecular-weight nitrosamines and nitramines in water at room temperature were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M(-1) s(-1)), for e(aq)(-) and *OH reactions, respectively, were as follows: methylethylnitrosamine, (1.67 +/- 0.06) x 10(10) and (4.95 +/- 0.21) x 10(8); diethylnitrosamine, (1.61 +/- 0.06) x 10(10) and (6.99 +/- 0.28) x 10(8); dimethylnitramine, (1.91 +/- 0.07) x 10(10) and (5.44 +/- 0.20) x 10(8); methylethylnitramine, (1.83 +/- 0.15) x 10(10) and (7.60 +/- 0.43) x 10(8); and diethylnitramine, (1.76 +/- 0.07) x 10(10) and (8.67 +/- 0.48) x 10(8), respectively. MNP/DMPO spin-trapping experiments demonstrated that hydroxyl radical reaction with these compounds occurs by hydrogen atom abstraction from an alkyl group, while the reaction of the hydrated electron was to form a transient radical anion. The latter adduct formation implies that the excess electron could subsequently be transferred to regenerate the parent chemical, which would significantly reduce the effectiveness of any free-radical-based remediation effort on nitrosamine/nitramine-contaminated waters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号