首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self field electromagnetism and quantum phenomena
Authors:Kenneth H Schatten
Institution:Solar Radiation Office , Laboratory for Atmospheres NASA/Goddard Space Flight Center , Greenbelt, MD, 20771
Abstract:Abstract

Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many “paradoxes” and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random “zero point radiation” is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, “self field” electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can “interact with themselves” in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: “evanesccent radiation”, “virtual photons”, and “vacuum fluctuations”. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号