首页 | 本学科首页   官方微博 | 高级检索  
     


Asymmetric Multicomponent Reactions Based on Trapping of Active Intermediates
Authors:Dan Zhang  Wenhao Hu
Affiliation:Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
Abstract:Metal carbenes derived from transition metal‐catalyzed decomposition of diazo compounds react with nucleophiles with heteroatoms, such as alcohols and amines, to generate highly active oxonium/ammonium ylides intermediates. These intermediates can be trapped by appropriate electrophiles to provide three‐component products. Based on this novel trapping process, we have developed novel multicomponent reactions (MCRs) of diazo compounds, alcohols/anilines, and electrophiles. The nucleophiles were also extended to electron‐rich heterocycles (indoles and pyrroles)/arenes, in which the resulting zwitterionic intermediates were also trapped by electrophiles. By employing efficient catalysis strategy, the reactions were realized with excellent stereocontrol and wide substrate scope. In this personal account, we introduce our breakthroughs in the development of novel asymmetric MCRs via trapping of the active ylides and zwitterionic intermediates with a number of electrophiles, such as imines, aldehyde, and Michael acceptors, under asymmetric catalysis. Transition metal/chiral Lewis acid catalysis, transition metal/Brønsted acid catalysis, and chiral transition‐metal catalysis, enable excellent stereocontrolled outcomes. The methodologies not only provide experimental evidence to support the existence of protic onium ylides intermediates/zwitterionic intermediates and the stepwise pathways of carbene‐induced O?H, N?H and C?H insertions, but also offer a novel approach for the efficient construction of chiral polyfunctional molecules.
Keywords:multicomponent reactions  metal carbenes  active intermediates  asymmetric catalysis  synergistic catalysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号