首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Realization of wide-angle and wideband absorber using metallic and graphene-based metasurface for mid-infrared and low THz frequency
Authors:Saeedeh Barzegar-Parizi
Institution:1.Department of Electrical Engineering,Sirjan University of Technology,Sirjan,Iran
Abstract:This article presents a study on mid-infrared and low-THz absorbers based on metallic and graphene metasurface. The absorber is constructed of a periodic array of patterned elements in patch form placed on a quarter-wavelength dielectric film terminated by a metallic reflector. A simple analytical circuit model equivalent to patch array is used for employing the matching impedance approach to realize the wideband absorber. This absorber is polarization independent for normal incident waves owing to its symmetric structure. Simulation and analytical circuit model results show that the graphene and metallic-based absorbers proposed in this paper can operate with an absorption value above 90% in a normalized bandwidth of 100% in the low terahertz (THz) and the mid-infrared regime, respectively. The proposed absorber is wide-angle for both TM and TE polarizations and polarization-insensitive for small incident angles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号