Abstract: | ABSTRACT: BACKGROUND: Endocannabinoids provide control over cortical neurotransmission. We investigated the developmental expression of key genes in the endocannabinoid system across human postnatal life and determined whether they correspond to the development of markers for inhibitory interneurons, which shape cortical development. We used microarray with qPCR validation and in situ hybridisation to quantify mRNA for the central endocannabinoid receptor CB1R, endocannabinoid synthetic enzymes (DAGLalpha for 2-arachidonylglycerol [2- AG] and NAPE-PLD for anandamide), and inactivating enzymes (MGL and ABHD6 for 2- AG and FAAH for anandamide) in human dorsolateral prefrontal cortex (39 days - 49 years). RESULTS: CB1R mRNA decreases until adulthood, particularly in layer II, after peaking between neonates and toddlers. DAGLalpha mRNA expression is lowest in early life and adulthood, peaking between school age and young adulthood. MGL expression declines after peaking in infancy, while ABHD6 increases from neonatal age. NAPE-PLD and FAAH expression increase steadily after infancy, peaking in adulthood. CONCLUSIONS: Stronger endocannabinoid regulation of presynaptic neurotransmission in both supragranular and infragranular cortical layers as indexed through higher CB1R mRNA may occur within the first few years of human life. After adolescence, higher mRNA levels of the anandamide synthetic and inactivating enzymes NAPE-PLD and FAAH suggest that a late developmental switch may occur where anandamide is more strongly regulated after adolescence than earlier in life. Thus, expression of key genes in the endocannabinoid system changes with maturation of cortical function. |