首页 | 本学科首页   官方微博 | 高级检索  
     检索      

动作电位编码光学二次谐波快速检测神经纤维膜电位动力学
引用本文:杨洪钦,陈新光,黄义梅,罗志慧,李晖,谢树森.动作电位编码光学二次谐波快速检测神经纤维膜电位动力学[J].光学学报,2012,32(4):417001-183.
作者姓名:杨洪钦  陈新光  黄义梅  罗志慧  李晖  谢树森
作者单位:杨洪钦:福建师范大学激光与光电子技术研究所 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
陈新光:福建师范大学激光与光电子技术研究所 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
黄义梅:福建师范大学激光与光电子技术研究所 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
罗志慧:福建师范大学激光与光电子技术研究所 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
李晖:福建师范大学激光与光电子技术研究所 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
谢树森:福建师范大学激光与光电子技术研究所 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
基金项目:国家自然科学基金(60978071)和福建省自然科学基金( 2010J01322) 资助课题。
摘    要:神经纤维膜电位动力学特性与神经信息的传导和编码密切关联。目前,传统电生理测量方法无法同时对膜上多个部位的动作电位进行快速检测。利用非线性光学二次谐波方法,通过数学建模,研究了髓鞘神经纤维动作电位编码的二次谐波信号特征及其检测灵敏性,并将其用于分析由压力引起的神经纤维形态改变,包括轴突直径和髓鞘厚度的改变,实现神经传导信息变化的快速检测。发现神经纤维膜电位的变化可以通过光学二次谐波信号的特征来表征。当神经纤维严重脱鞘时,其上的动作电位会产生明显的传输阻滞。结果表明光学二次谐波技术有望成为神经纤维损伤状态快速检测的一种有力手段。

关 键 词:生物光学  光学二次谐波  神经纤维  数值模拟  膜电位动力学
收稿时间:2011/9/29

Membrane Potential Dynamics of Nerve Fibers Fast Probed by Action-Potential-Encoded Second Harmonic Generation
Yang Hongqin Chen Xinguang Huang Yimei Luo Zhihui Li Hui Xie Shusen.Membrane Potential Dynamics of Nerve Fibers Fast Probed by Action-Potential-Encoded Second Harmonic Generation[J].Acta Optica Sinica,2012,32(4):417001-183.
Authors:Yang Hongqin Chen Xinguang Huang Yimei Luo Zhihui Li Hui Xie Shusen
Institution:Yang Hongqin Chen Xinguang Huang Yimei Luo Zhihui Li Hui Xie Shusen(Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education,Fujian Provincial Key Laboratory for Photonics Technology,Institute of Laser and Optoelectronics Technology,Fujian Normal University,Fuzhou,Fujian 350007,China)
Abstract:Action potential dynamics of nerve fibers is related to the information conduction and code among neurons. Nowadays, traditional electrophysiologic approach still could not fast probe the action potential dynamics simultaneously at multiple positions on nerve fibers. Nonlinear optical second harmonic generation combined with mathematical modeling is used to study the characteristics of myelinated nerve fibers. The detected sensitivity of the method is analyzed at first, and then, the information changes induced by the changes in morphology including axonal diameter and myelin thickness on a myelinated nerve fiber under a compression are investigated. The results demonstrate that changes in membrane potential induced by a compression may be fast probed via second harmonic generation. Furthermore, the action potential conduction is blocked when severe demyelination happens on the nerve fiber. It is shown that optical second harmonic generation is a potential tool to evaluate the injured states of nerve fibers.
Keywords:biotechnology  optical second harmonic generation  nerve fiber  numerical simulation  membrane potential dynamics
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号