首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thin films composed of irregular micro-block arrays of closely packed CdS nanoparticles for enhanced photoelectrochemical performance
Institution:1. Institute of Applied Physics, University of Hamburg, 20355 Hamburg, Germany;2. National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Republic of Moldova;3. Institute of Solid State Physics, University of Bremen, 28334 Bremen, Germany
Abstract:CdS is a very important semiconductor, and various micro-/nano-structured forms of CdS have been fabricated with the aim of improving its photoelectrochemical performance. We report here for the first time the preparation of a CdS film consisting of irregular micro-block arrays of closely packed CdS nanoparticles. It performs outstandingly well as a photoanode because it possesses the advantages of both arrays and nanoparticles. This CdS film is prepared simply by a combination of reaction and assembly at the gas/liquid interface (RAG/L) with successive ionic layer adsorption and reaction (SILAR), requiring no templates or expensive equipment. In this approach, the nanopores in the film of loosely aggregated CdS nanoparticles produced by RAG/L are filled by CdS nanoparticles via SILAR, forming a compact CdS film. Network micro-cracks form in the compact CdS film due to calcination caused by differential thermal expansion compared with the substrate, and these cut the CdS film into irregular micro-block arrays. This micro-/nano-structure in the prepared CdS film improves its capacity for visible light absorption, facilitates the generation/separation of excited charges, and enhances mass transfer. In an alkaline solution of methanol, the prepared CdS film exhibits the highest saturation photocurrent density (6.5 mA cm? 2) ever reported on CdS-based photoanodes under visible light illumination.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号