首页 | 本学科首页   官方微博 | 高级检索  
     


Surface waves in a rotating anisotropic elastic half-space
Authors:T. C. T. Ting  
Affiliation:

Division of Mechanics and Computation, Stanford University, Durand Building 262, Stanford, CA 94305-4040, USA

Abstract:The Stroh formalism for surface waves in an anisotropic elastic half-space is extended to the case when the half-space rotates about an axis with a constant rotation rate. The sextic equation for the Stroh eigenvalues, the eigenvectors, the orthogonality and closure relations are obtained. The Barnett–Lothe tensors are no longer real, but two of them are Hermitian. Taziev’s equation is generalized and used to derive the polarization vector and the secular equation without computing the Stroh eigenvalues and eigenvectors. An alternative derivation using the method of first integrals by Mozhaev and Destrade yields new invariants that relate the displacement and stress and are independent of the depth from the free surface. Explicit expression of the polarization vector and the secular equation for monoclinic materials with the symmetry plane at x3 = 0 with the rotation about the x3-axis obtained by Destrade is re-examined, and new results are presented. Also presented is the one-component surface wave in the rotating half-space.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号