首页 | 本学科首页   官方微博 | 高级检索  
     

稀疏正则化最小类散度半监督分类机
引用本文:刘建华,吴冬燕. 稀疏正则化最小类散度半监督分类机[J]. 宁波大学学报(理工版), 2014, 0(2): 44-48
作者姓名:刘建华  吴冬燕
作者单位:浙江工商职业技术学院 电子与信息工程学院, 浙江 宁波 315012
基金项目:浙江省自然科学基金(LY13F020011);教育部人文社会科学研究规划基金(13YJAZH084).
摘    要:基于稀疏表示理论提出一种稀疏正则化最小类散度半监督分类机(SRMCV), 且对于模式分类问题, SRMCV通过引入稀疏Laplacian正则化项和类内散度信息以实现预测空间函数在全局稀疏表示结构下平滑变化, 同时通过类内数据散度结构进一步优化决策函数的判别方向, 此方法能解决现有SSL方法对模型参数敏感和在噪声学习环境下缺乏鲁棒性等问题, 其有效性已在实际数据集上通过实验验证.

关 键 词:半监督学习  稀疏表示  支持向量机  最小类散度  核技巧

Sparse Regularization for Minimum Class Variance Semi-supervised Classifier
LIU Jian-hua,WU Dong-yan. Sparse Regularization for Minimum Class Variance Semi-supervised Classifier[J]. Journal of Ningbo University(Natural Science and Engineering Edition), 2014, 0(2): 44-48
Authors:LIU Jian-hua  WU Dong-yan
Affiliation:School of Information Engineering, Zhejiang Business Technology Institute, Ningbo 315012, China
Abstract:This paper presents a sparse regularization minimum class scatter semi-supervised classifier (SRMCV) based on the theory of sparse representation. For the problems of pattern classification, SRMCV aims at achieving smooth changes of the predicted spatial function in the structure of the global sparse representation by introducing sparse Laplacian regularization term and the information of inner class scatter. In addition, through the scatter structure of inner class data, it is intended to further optimize the discriminant direction of the decision-making function. This method can solve some problems existing in the SSL method such as sensitivity to the model parameters, the lack of robustness in the noisy learning environment, etc. On the real data set, the experimental results manifest the effectiveness of the proposed method.
Keywords:semi-supervised learning  sparse representation  support vector machine  minimum class scatter  kernel trick
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《宁波大学学报(理工版)》浏览原始摘要信息
点击此处可从《宁波大学学报(理工版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号