首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of the rate of H + O2 + M → HO2 + M (M = N2, Ar, H2O) from ignition of syngas at practical conditions
Authors:John D. Mertens  Danielle M. Kalitan  Eric L. Petersen
Affiliation:a Department of Engineering, MCEC, Trinity College, 300 Summit Street, Hartford, CT 06106, USA
b Mechanical, Materials & Aerospace Engineering, University of Central Florida, Orlando, FL, USA
c Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
Abstract:In H2 and H2/CO oxidation, the H + O2 + M termination step is one of the most important reactions at elevated pressures. With the recent, increased interest in synthetic fuels, an accurate assessment of its rate coefficient becomes increasingly important, especially for real fuel/air mixtures. Ignition delay times in shock-tube experiments at the conditions selected in this study are only sensitive to the rates of the title reaction and the branching reaction H + O2 = OH + O, the rate of which is known to a high level of accuracy. The rate coefficient of the title reaction for M = N2, Ar, and H2O was determined by adjusting its value in a detailed chemical kinetics model to match ignition delay times for H2/CO/O2/N2, H2/CO/O2/Ar, and H2/CO/O2/N2/H2O mixtures with fuel/air equivalence ratios of ? = 0.5, 0.9, and 1.0. The rate of H + O2 + N2 = HO2 + N2 was measured to be 2.7 (−0.7/+0.8) × 1015 cm6/mol2 s for T = 916-1265 K and P = 1-17 atm. The present determination agrees well with the recent study of Bates et al. [R.W. Bates, D.M. Golden, R.K. Hanson, C.T. Bowman, Phys. Chem. Chem. Phys. 3 (2001) 2337-2342], whose rate expressions are suggested herein for modeling the falloff regime. The rate of H + O2 + Ar = HO2 + Ar was measured to be 1.9 × 1015 cm6/mol2 s for T = 932-965 K and P = 1.4 atm. The rate of H + O2 + H2O = HO2 + H2O was measured to be 3.3 × 1016 cm6/mol2 s for T = 1071-1161 K and P = 1.3 atm. These are the first experimental measurements of the rates of the title reactions in practical combustion fuel/air mixtures.
Keywords:Chemical kinetics   Shock tube   Hydrogen   Ignition   Syngas   High-pressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号