首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire
Authors:Sean P Kearney  Kraig Frederickson  Thomas W Grasser
Institution:Engineering Sciences Center, Sandia National Laboratories, P.O. Box 5800, Mail Stop 0826, Albuquerque, NM 87185-0826, USA
Abstract:We present a dual-pump coherent anti-Stokes Raman scattering (CARS) instrument, which has been constructed for the probing of temperature fluctuations in turbulent pool fires of meter-scale. The measurements were performed at the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility at Sandia National Laboratories, which provides a canonical fire plume in quiescent wind conditions, with well-characterized boundary conditions and access for modern laser-diagnostic probes. The details of the dual-pump CARS experimental facility for the fire-science application are presented, and single-laser-shot CARS spectra containing information from in-fire N2, O2, H2, and CO2 are provided. Single-shot temperatures are obtained from spectral fitting of the Raman Q-branch signature of N2, from which histograms that estimate the pdf of the enthalpy-averaged temperature fluctuations at the center of the fire plume are presented. Results from two different sooting fire experiments reveal excellent test-to-test repeatability of the fire plume provided by FLAME, as well as the CARS-measured temperatures. The accuracy and precision of the CARS temperatures is assessed from measurements in furnace-heated air, where the temperature can be accurately determined by a thermocouple. At temperatures in excess of 500 K, the furnace results show that the CARS measurements are accurate to within 2-3% and precise to within ±3-5% of the measured absolute temperature.
Keywords:Fire science  Thermometry  Laser diagnostics  CARS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号