首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic effects on atom tunneling: conformational isomerization of monomeric para-substituted benzoic acid derivatives
Authors:Amiri Shadi  Reisenauer Hans Peter  Schreiner Peter R
Institution:Institute for Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
Abstract:We present the first generation and spectroscopic identification of the higher-lying E conformer of the simplest aromatic carboxylic acid, benzoic acid (1a), as its O-deuterated isotopologue (E)-d(1)-1a using matrix-isolation techniques; the parent (E)-1a could not be observed because of fast H-tunneling to the more stable conformer (Z)-1a. Even deuterated (E)-d(1)-1a converts quickly back to (Z)-d(1)-1a through D-tunneling with a half-life (τ) of ~12 min in Ar at 11 K. Tunneling computations using an Eckart barrier in conjunction with a CCSD(T)/cc-pVTZ//MP2/cc-pVDZ + ZPVE intrinsic reaction path revealed that τ of (E)-1a is only ~10(-5) min, in marked contrast to those of simple aliphatic acids, which are in the range of minutes. The electronic substituent effects on D-tunneling in para-substituted benzoic acid derivatives (p-X-PhCOOD, d(1)-1) were systematically studied in Ar matrices at 11 K to derive the first Hammett relationships for atom tunneling. σ-Electron donors (X = alkyl) increase the half-life of d(1)-1, while σ-acceptor/π-donor groups (X = OD, NH(2), halogen) and to an even greater extent a σ-/π-acceptor group (X = NO(2)) decrease τ. The latter finding is in line with the smaller E-to-Z reaction barriers and narrower reaction widths for the isomerization. Tunneling substituent constants (σ(t)) for this conformational isomerization were derived experimentally and computationally.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号