首页 | 本学科首页   官方微博 | 高级检索  
     


A Model of Interacting Navier–Stokes Singularities
Authors:Hugues Faller,Lucas Fery,Damien Geneste,Bé  rengè  re Dubrulle
Affiliation:1.Service de Physique de l’État Condensé, CNRS UMR 3680, CEA, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (H.F.); (D.G.); (B.D.);2.Department of Physics, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
Abstract:We introduce a model of interacting singularities of Navier–Stokes equations, named pinçons. They follow non-equilibrium dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier–Stokes equations. This model can be seen as a generalization of the vorton model of Novikov that was derived for the Euler equations. When immersed in a regular field, the pinçons are further transported and sheared by the regular field, while applying a stress onto the regular field that becomes dominant at a scale that is smaller than the Kolmogorov length. We apply this model to compute the motion of a pair of pinçons. A pinçon dipole is intrinsically repelling and the pinçons generically run away from each other in the early stage of their interaction. At a late time, the dissipation takes over, and the dipole dies over a viscous time scale. In the presence of a stochastic forcing, the dipole tends to orientate itself so that its components are perpendicular to their separation, and it can then follow during a transient time a near out-of-equilibrium state, with forcing balancing dissipation. In the general case where the pinçons have arbitrary intensity and orientation, we observe three generic dynamics in the early stage: one collapse with infinite dissipation, and two expansion modes, the dipolar anti-aligned runaway and an anisotropic aligned runaway. The collapse of a pair of pinçons follows several characteristics of the reconnection between two vortex rings, including the scaling of the distance between the two components, following Leray scaling tct.
Keywords:turbulence   singularity   non-equilibrium dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号