首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics simulations of nanoparticles in dense isotropic nematogens: the role of matrix-induced long-range repulsive interactions
Authors:Tian Pu  Smith Grant D
Institution:Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA. tianpu@mail.nih.gov
Abstract:We have carried out molecular dynamics simulation studies of binary mixtures of spherical nanoparticles (NPs) in a matrix of dense isotropic rod-shaped nematogens, with the size of the nematogen length being similar to that of the NP diameter. NPs at even low concentrations were found to shift the isotropic-nematic (I-N) transition significantly to higher pressure at a given temperature, indicative of long-range perturbation of the nematogenic matrix by the NPs. The NPs were found to be dispersed in the dense isotropic nematogenic matrix over a wide range of NP concentrations due to long-range (compared with the molecular size of the nematogens) repulsion caused by NP-induced local order fluctuations and reduced local orientational correlation in the isotropic nematogenic matrix, in contrast to the phase separation predicted and observed in other studies where the particles were much larger or smaller than the nematogens. Furthermore, since the repulsion observed in the NP-nematogen mixtures is only microscopically long range (on the order of about ten molecular lengths of the nematogens), globally ordered clustering observed in mixtures of colloidal particles in nematic matrices resulting from macroscopically long-range interaction is not observed in our simulations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号